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We study the Saffman-Taylor instability of a non-Newtonian fluid in a Hele-Shaw cell. Using a fluid model
with shear-rate dependent viscosity, we derive a Darcy’s law whose viscosity depends upon the squared
pressure gradient. This yields a natural, nonlinear boundary value problem for the pressure. A model proposed
recently by Bonnet al. @Phys. Rev. Lett.75, 2132~1995!# follows from this modified law. For a shear-thinning
liquid, our derivation shows strong constraints upon the fluid viscosity— strong shear-thinning does not allow
the construction of a unique Darcy’s law, and is related to the appearance of slip layers in the flow. For a
weakly shear-thinning liquid, we calculate corrections to the Newtonian instability of an expanding bubble in
a radial cell.@S1063-651X~96!51611-9#

PACS number~s!: 47.20.2k, 68.10.2m, 61.30.2v

One reason for the enduring interest in Newtonian fluid
flow in Hele-Shaw cells is its close analogy to quasistatic
solidification. The Saffman-Taylor~ST! instability of the
driven fluid-fluid interface plays the same role as the
Mullins-Sekerka instability of the solidification front@1#.
Features usually associated with solidification, such as the
growth of stable dendritic fingers and sidebranching, have
also been observed in fluids with an imposed anisotropy, say
by scoring lines on the plates of the cell@2#. However, ex-
periments using non-Newtonian or anisotropic fluids, such as
liquid crystals, have shown that ‘‘solidification’’ structures
can be induced by the bulk properties of the fluid itself
@3–5#. The precise mechanisms of generating such dendritic
fingers with stable tips are unknown. One of our interests is
in liquid crystal flows, which are characterized by compli-
cated hydrodynamics@6#. We conjecture that stable tip
propagation in these materials is a consequence of shear thin-
ning associated with flow induced realignment of the liquid
crystal director. In this paper we focus on this single prop-
erty, and consider an expanding gas bubble in a radial Hele-
Shaw cell containing a shear-thinning liquid.

In recent work on polymeric fluids, Bonn and co-workers
@7# proposed modeling the Hele-Shaw flow of a non-
Newtonian fluid by positing the modified Darcy’s law

u52
b2

12m~ uuu2/b2!
“p, “•u50, ~1!

whereu is the velocity,b is the gap width,p is the pressure,
and the viscosity m depends on the shear ratev
(uvu'uuu/b): m(v2)5m0(11av2t2)/(11v2t2), 0,a
<1. For a,1, m is a decreasing function ofv2, and the
fluid is shear-thinning with asymptotic viscositiesm0 and
m`5am0. Heret is a single characteristic relaxation time of
the polymer.

A similar approach is found in the injection molding lit-
erature@8#. In this derivation, velocity and viscosity are av-
eraged over the transverse direction, giving rise to equations
similar to Eq.~1!, but taking into full account the viscosity
dependence on the transverse shear.

In this Rapid Communication, we give several results. We
derive the modified Darcy’s law from first principles, using a
simple non-Newtonian fluid model. We show further that Eq.
~1! follows from a more basic version of Darcy’s law, where
the viscosity depends instead upon the squared pressure gra-
dient. This law gives a natural boundary value problem
~BVP! for the pressure, as in the Newtonian case. A result of
particular interest is that for a shear-thinning fluid, it is not
always possible to define a unique viscosity in the Darcy’s
law. This is associated with the appearance of negative ef-
fective viscosities in the non-Newtonian Navier-Stokes equa-
tion, and the possibility of solutions with discontinuous
shear. Such solutions may give a basis for interpreting ob-
served ’’spurt’’ behavior in liquid crystal flows@9#. For a
shear-thickening liquid, the viscosity in Darcy’s law is
unique, but the BVP can change from elliptic to hyperbolic.
In other systems this is associated with the appearance of
shock waves. For a weakly shear-thinning liquid, we calcu-
late corrections to the Newtonian ST instability of an ex-
panding bubble in a radial cell. Finally, we note some dis-
crepancies between our results and those of Bonn and co-
workers.

Derivation and constraints.The simplest model of an in-
compressible, isotropic but non-Newtonian fluid is given by
the generalized three-dimensional~3D! Navier-Stokes equa-
tions:

r
Dv

Dt
52“p1“•„m~ uSu2!S…, “•v50, ~2!

where S is the rate-of-strain tensor, anduSu25tr(S2)
5( i j Si j

2 @~m can also depend on det(S…, but this is negligible
in Hele-Shaw flow# @10#. We choosez to be the coordinate
across the gap, andx andy as the lateral coordinates. No-slip
is assumed on the plates: (u,v,w)uz56b/250.

There is an apparent limitation on applying this model.
Consider simple Poiseuille flowv5„u(z,t),0,0…, driven by a
constant pressure gradienta. For unit density, Eq.~2! re-
duces to

ut52a1„m~uz
2!uz…z52a1h~uz

2!uzz, ~3!
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where theeffective viscosityh(z)5m(z)12zm8(z) is the
coefficient of uzz. If in a shear-thinning liquidm(z) de-
creases rapidly enough, thenh is negative for some range of
z.0. The conditionh(z).0, necessary for classical well-
posedness, arises naturally in our derivation below. If
h(z),0 in some range, the existence and nature of solutions
is a fascinating question, intimately related to the appearance
of slip layers in the flow. One well-grounded approach to
such a situation is to consider additional~regularizing! phys-
ics, a point to which we will return.

In the small gap limit, the Reynolds number is small and
inertial terms can be neglected:

“p2“•„m~ uSu2!S…50, “•v50. ~4!

These Stokes equations are further simplified by making use
of the large aspect ratio of the cell. LetL be some lateral
length scale, rescale the coordinates byx5Lx8, y5Ly8, and
z5bz8, and lete5b/L!1. Velocities are scaled correspond-

ingly. We note that uS8u25e21uz8
8
•uz8

8 1O(1,e), where
u5(u,v). Retaining only lowest order terms yields reduced
Stokes equations

“2p2]z@m~ uuzu2!uz#50, ]zp50, ~5!

where“25(]x ,]y). These equations, with a ‘‘power-law’’
viscositym(z)5M (z/zo)

(n21)/2 (0,n,2), have been used
to study the linear stability of interfaces in the channel and
radial geometries@11#.

We continue without further approximation. Asp de-
pends only uponx andy, Eq. ~5! integrates to

z“2p5m~ uuzu2!uz . ~6!

For simplicity, we consider velocity profiles symmetric
aboutz50. We wish to finduz as a function of“2p, as in
the usual Darcy’s law. Squaring Eq.~6! gives an implicit
equation foruuzu2 in terms ofz2u“2pu2. The invertibility of
this equation, or lack thereof, is a central issue. For
f (z)5zm2(z), f (0)50 and f 8(0)5m2(0).0, and so there
is local invertibility aroundz50. A sufficient condition for
finding z5uuzu2 uniquely in terms of z2u“2pu2 is that
f 8(z).0, implying that

h~z!5m12zm8~z!.0, ~7!

for all z.0. This is the condition of having positive effective
viscosity in Eq.~3!. For the power-law or a shear-thickening
viscositym, this inequality is always satisfied. For a general
shear-thinning liquid this constraint will not be satisfied for
everym. For example, ifm(z)5m0(11az/zo)/(11z/zo),
with 0,a<1, then m satisfies inequality~7! only for
a.1/9. Figure 1 showsf (z) for a51/2 and 1/20. Assuming
that inequality ~7! holds, then Eq.~6! can be inverted
uniquely, to give

uz5
z“2p

m̃~z2u“2pu2!
, or u5E

2b/2

z

dz8
z8“2p

m̃~z82u“2pu2!
.

~8!

Here, ifm is a strictly decreasing or strictly increasing func-
tion of its argument, then so ism̃. The gap-averaged velocity

is ū(x,y)5(1/b)*2b/2
b/2 dz u(x,y,z). Gap averaging Eq.~8!

and the divergence-free condition yields

ū5
2b2

12m̄~ u“2pu2!
“2p, and “2• ū50 ~9!

where 1/m̄5(12/b3)*2b/2
b/2 dz@z2/m̃(z2u“2pu2)#. The sub-

script on“ and bar onu are now dropped. Equation~9! is
our first result. Figure 2 showsm̄(u“pu2), for variousa ’s,
including the limiting value of 1/9.

Equation~1! used by Bonn and co-workers now follows
by squaring Eq.~9!, and expressingu“pu2 in terms ofuuu2. In
this case, the functional form is such that this inversion can
always be accomplished. We consider Eq.~9! to be the more
natural form of the flow equations; it leads to a BVP forp, as
in the Newtonian case.

We have thus derived a non-Newtonian Darcy’s law for
the bulk fluid. Now consider a finite patch of fluid, denoted
by V with boundaryG, surrounded by a gas at uniform pres-
sure. Thenp must solve the nonlinear BVP,

“•S 1

m̄~ u“pu2!
“pD 50 in V, puG52gk, ~10!

FIG. 1. f (z) for a51/2 ~dashed! and 1/20~solid!.

FIG. 2. The effective viscositym̄ for variousa. Possible hys-
teretic behavior inm̄ for a51/20 ~dashed!.
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where for simplicity the traditional Laplace-Young condition
at G has been taken, withg the surface tension parameter
andk the curvature ofG. Nonlinear BVPs of this form arise
in many other physical contexts, such as gas dynamics@12#
and elasticity@13#.

If m̄ is constant, thenp is harmonic, and the BVP~10! can
be solved by boundary integral methods@14#. For m̄ not a
constant, the shear-thinning and shear-thickening problems
must be considered separately.

Shear thinning. We assume thatm̄(z) is monotonically
decreasing, 0,m̄(`)<m̄(0),`. Then the BVP~10! can be
interpreted as the Euler-Lagrange equation to find the mini-
mizer of

F@p#5E
V
F~ u“pu!dA, with puG52gk, ~11!

where F(s)5*0
s2ds8s8/m̄(s82). Then, F9(s)5@m̄(s2)

22s2m̄8(s2)]/ m̄(s2)2.0. And so,F(s) is monotonic and
convex. Under these conditions, the BVP~10! is strongly
elliptic and has a unique solution@15#.

Shear thickening. We assume now thatm̄(z) is mono-
tonically increasing with 0,m̄(0)<m̄(`),`. The corre-
sponding variational problem now has an integral density
F(s) ~still monotonically increasing! that can possibly lose
convexity. Loss of convexity is associated with a transition
from elliptic to hyperbolic behavior, which, in the compress-
ible flow context, is associated with the appearance of shock
waves@12#. In the context of Hele-Shaw flow, it is unclear to
us what would be the physical manifestation of such a tran-
sition.

The flow problem.The flow problem we consider is that
of an expanding gas bubble in a radial Hele-Shaw cell. The
typical scenario for the development of the ST instability is
the appearance of growing petals, whose radius of curvature
increases until it is comparable to the wavelength of an un-
stable mode. The petal tip then splits, engendering new pet-
als, and the process continues, giving rise to a dense branch-
ing morphology@16#. We expect qualitative differences in
shear-thinning fluids, and conjecture that shear-thinning pre-
vents the growth of the radius of curvature, preventing split-
ting and stabilizing the tips. Such behavior has been ob-
served both in liquid crystals@4,5# and in polymer solutions
@3#.

The flow problem requires solving the BVP~10! for the
pressure. The interfaceG must move with the fluid: IfV is
the velocity ofG, thenn•V5n•uuG , wheren is the normal
to the interface. The fluid domainV ~outside of the gas
bubble! is unbounded, with a finite mass flux at infinity. The
boundary conditions onp then become

puG5gk, p→2A lnr as r5Ax21y2→`. ~12!

HereA56m0St /pb
2, andSt is the rate of bubble area in-

crease. A unique solution still exists to the BVP with un-
boundedV @19#.

The flow problem simplifies in the limit of weak shear
thinning (a512d, d!1), and we can calculate corrections
there to the Newtonian ST instability@5#. For a bubble of
radiusR(t), the instantaneous growth rates of an azimuthal
disturbance with wave numberm.1 is

s5
Ṙ

R F221mS 11Cd
m21

m11D G
1g

b2

12m0R
3m~12m2!S 11Cd

2m

m11D , ~13!

whereC.0 is a constant. Shear thinning both increases in-
stability due to driving~the first term!, and increases the
stabilization due to surface tension~the second term!. The
net effect, at small surface tension, is todecreasethe band of
unstable modes, andincreasethe growth rate of the most
unstable mode.~This is consistent with numerical calcula-
tions for generala, the details of which will be presented
elsewhere.! Perhaps this enhanced wavelength selection is
related to the formation of stable tips in shear-thinning fluids.

Negative effective viscosity and loss of uniqueness.We
noted that loss of unique invertibility in Eq.~6! was equiva-
lent to the appearance of a region of negativeh in Eq. ~3!.
Figure 1 showsz5uuzu2 versusf (z)5zm2(z), for a51/20
~the solid curve!. Since f 8(z)5m(z)h(z), there is a range
(z1 ,z2) whereh,0. For small pressure gradient, orf, f 2
for uzu<b/2, there is a unique symmetric shear flow solution
with positive h. However, as the pressure gradient is in-
creased~‘‘ramped up’’!, f can become greater thanf 2, and
negativeh is possible.

While the general initial value problem is then ill-posed,
formal steady states can be constructed which join solutions
in the positive diffusion regions, under the constraints of
continuous velocity and stress. One such solution is shown in
Fig. 3, where the wall region has a ‘‘slip layer’’ arising from
the velocity gradient at the wall jumping to the lower viscos-
ity branch. Such slip layers may already have been observed
@17#. The jump is shown by the dashed line atf̄ in Fig. 1.
Since f is the squared viscous stress, such a horizontal jump
corresponds to its continuity. In this construction, however,
f̄5 z̄ 2u“pu2 is not fixed, and so neither is the point of match-
ing z̄. We suspect that in the steady statef̄ might be given by
the Maxwell construction, where the areas between the
curves ofA f̄ andAf (z), as a function ofz, are equal.

Slip layers have been discussed by Malkus, Nohel, and
Plohr @18# who consider a Johnson-Segalman-Oldroyd fluid,

FIG. 3. A possible steady-state solution with a slip layer at the
walls.
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rather than one described by Eq.~2!. Their set of constructed
steady states is the same, but apparently without the problem
of possible ill-posedness. They use dynamical systems tools
to show that in the low Reynolds number limit, the extra
stress equations pick the matching pointz̄ dynamically by
fixed point stability. They show further that the system ex-
hibits hysteretic behavior, but that for a pressure gradient
being ~slowly! ramped up, the selectedz̄ corresponds to
f̄5 f 1.
Such an approach would allow the construction of shear

flows, characterized by a pressure gradient, in situations
where our model Eq.~2! may be inappropriate. However, in
constructing the viscositym̄, the possibility of hysteretic be-
havior would have to be allowed. A possible hysteresis loop
in m̄, for a51/20, is shown in Fig. 2.

In summary, for fluids whose viscosity depends on shear
rate, we derive a Darcy’s law whose gap-averaged viscosity
depends upon the pressure gradient. Linear stability analysis
suggests that one effect of shear thinning may be the stabi-
lization of tips. Our derivation assumes positivity of an ef-
fective viscosity. Loss of positivity is associated with slip
layers appearing in the flow, and nonuniqueness of the gap-
averaged viscosity.

Bonn and co-workers argue thatp is essentially harmonic.
They apply the divergence free condition to Eq.~1! to find

m¹2p2m8“~u•u!•“p50.

As “(u•u) scales like the convective derivative in the
Navier-Stokes equation, they argue that it can be neglected.
Unfortunately, smallness of the Reynolds number reduces
the Navier-Stokes equations to the Stokes equations, but it is
not available for such duty afterwards. Bonn and co-workers
use the assumption of harmonicity to find the interface ve-
locity. The exact non-Newtonian pressure can be computed
for the circular expanding bubble, to find

¹2p5
224Ṙm0

b2RD2@11~r /DR!2#2
~12a!, D5

tṘ

b
.

If a51 ~constant viscosity!, the pressure is harmonic; but
for many shear-thinning fluids,a!1 ~as in Bonn and co-
workers!. One can show that using¹2p50, for a circular
bubble, givesO(1) relative errors in the interface velocity.
These errors might be smaller in a channel geometry, as
considered by Bonn and co-workers.
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